Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many domains of AI and its effects are established, which mainly rely on their integration modeling cognition of human and AI agents, collecting and representing knowledge using them at the human level, and maintaining decision-making processes towards physical action eligible to and in cooperation with humans. Especially in human-robot interaction, many AI and robotics technologies are focused on human- robot cognitive modeling, from visual processing to symbolic reasoning and from reactive control to action recognition and learning, which will support human-multi-agent cooperative achieving tasks. However, the main challenge is efficiently combining human motivations and AI agents’ purposes in a sharing architecture and reaching a consensus in complex environments and missions. To fill this gap, this workshop brings together researchers from different communities inter- ested in multi-agent systems (MAS) and human-robot interaction (HRI) to explore potential approaches, future research directions, and domains in human-multi-agent cognitive fusion.more » « lessFree, publicly-accessible full text available April 30, 2026
-
Real-time computer vision and remote visual sensing platforms are increasingly used in numerous underwater applications such as shipwreck mapping, subsea inspection, coastal water monitoring, surveillance, coral reef surveying, invasive fish tracking, and more. Recent advancements in robot vision and powerful single-board computers have paved the way for an imminent revolution in the next generation of subsea technologies. In this chapter, we present these exciting emerging applications and discuss relevant open problems and practical considerations. First, we delineate the specific environmental and operational challenges of underwater vision and highlight some prominent scientific and engineering solutions to ensure robust visual perception. We specifically focus on the characteristics of underwater light propagation from the perspective of image formation and photometry. We also discuss the recent developments and trends in underwater imaging literature to facilitate the restoration, enhancement, and filtering of inherently noisy visual data. Subsequently, we demonstrate how these ideas are extended and deployed in the perception pipelines of Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs). In particular, we present several use cases for marine life monitoring and conservation, human-robot cooperative missions for inspecting submarine cables and archaeological sites, subsea structure or cave mapping, aquaculture, and marine ecology. We elaborately discuss how the deep visual learning and on-device AI breakthroughs are transforming the perception, planning, localization, and navigation capabilities of visually-guided underwater robots. Along this line, we also highlight the prospective future research directions and open problems at the intersection of computer vision and underwater robotics domains.more » « less
-
null (Ed.)This paper presents a novel risk vector-based near miss prediction and obstacle avoidance method. The proposed method uses the sensor readings about the pose of the other obstacles to infer their motion model (velocity and heading) and, accordingly, adapt the risk assessment and take corrective actions if necessary. Relative vector calculations allow the method to perform in real-time. The algorithm has 1.68 times faster computation performance with less change of motion than other methods and it enables a robot to avoid 25 obstacles in a congested area. Fallback behaviors are also proposed in case of faulty sensors or situation changes. Simulation experiments with parameters inferred from experiments in the ocean with our custom-made robotic boat show the flexibility and adaptability of the proposed method to many obstacles present in the environment. Results highlight more efficient trajectories and comparable safety as other state-of-the-art methods, as well as robustness to failures.more » « less
-
Visual tags (e.g., barcodes, QR codes) are ubiquitous in modern day life, though they rely on obtrusive geometric patterns to encode data, degrading the overall user experience. We propose a new paradigm of passive visual tags which utilizes light polarization to imperceptibly encode data using cheap, widely-available components. The tag and its data can be extracted from background scenery using off-the-shelf cameras with inexpensive LCD shutters attached atop camera lenses. We examine the feasibility of this design with real-world experiments. Initial results show zero bit errors at distances up to 3.0~m, an angular-detection range of \ang110, and robustness to manifold ambient light and occlusion scenarios.more » « less
-
This paper presents a method of computing free motions of a planar assembly of rigid bodies connected by loose joints. Joints are modeled using local distance constraints, which are then linearized with respect to configuration space velocities, yielding a linear programming formulation that allows analysis of systems with thousands of rigid bodies. Potential applications include analysis of collections of modular robots, structural stability perturbation analysis, tolerance analysis for mechanical systems, and formation control of mobile robots.more » « less
-
Bearing only cooperative localization has been used successfully on aerial and ground vehicles. In this paper we present an extension of the approach to the underwater domain. The focus is on adapting the technique to handle the challenging visibility conditions underwater. Furthermore, data from inertial, magnetic, and depth sensors are utilized to improve the robustness of the estimation. In addition to robotic applications, the presented technique can be used for cave mapping and for marine archeology surveying, both by human divers. Experimental results from different environments, including a fresh water, low visibility, lake in South Carolina; a cavern in Florida; and coral reefs in Barbados during the day and during the night, validate the robustness and the accuracy of the proposed approach.more » « less
An official website of the United States government
